
The material presented by the authors does not necessarily portray the viewpoint of the editors
and the management of the Institute of Business and Technology (BIZTEK).

JICT is published by the Institute of Business and Technology (BIZTEK).
Main Ibrahim Hydri Road, Korangi Creek, Karachi-75190, Pakistan.

Large Data handling Technique for Compression
Pre-coder using Scalable Algorithm

*

ABSTRACT

Journal of Information & Communication Technology
Vol. 1, No. 1, (Spring 2007) 42-50

C

Keywords : Layered scheme, large data; data file call; vhdl code; ROM data file

This paper presents the procedure of handling and testing digital design
module used for the image data separation using averaging scalable
method. The design will incorporate all constraints and after satisfactory
mathematical interpretation, source code of algorithm is developed in
VHDL. Afterwards, pre and post simulations will be run using MODEL
SIM to verify proper design operation. The proposed work is the part
of scalable image compression pre coder used for the compression of
image. This paper explains the effective solution to deal with large input
data which can not be handled properly by conventional design procedure.
 In this research area or DSP applications, data information is very large
in number and for hardware verification required to be transmitted at
reasonably high speed without any considerable loss. The problem of
large data input vectors is encountered in different applications and
needs special attention for rectification while designing the chip. For
this purpose, simulated large data is required to be generated representing
the actual input video data. Actual video data may be of any image
standards like JPEG, MPEG or H.26X. This paper presents the architecture
of pre coder chip and the results of the work carried out till RAM module
interfaced between buffer control and pre coder modules with all
limitations and their corresponding solutions.

Muhammad Kamran

Shi Feng

Ji Weixing

Beijing Institute of Technology, Beijing, China
University of Engineering and Technology, Lahore, Pakistan

Beijing Institute of Technology, Beijing, China

Beijing Institute of Technology, Beijing, China

*

*

*

*

*

Muhammad Kamran: kamarn.uet@gmail.com
Muhammad Kamran: kamarn.uet@gmail.com
Muhammad Kamran: kamarn.uet@gmail.com
Shi Feng: shifengyoujian@tom.com
Ji Weixing: pass@bit.edu.cn

*

Inspec Classification: C6130M

1) INTRODUCTION

Simulation is the first step for any kind of chip design prior to its synthesis and realization.
Many simulation and synthesis tools are available for this purpose like Active HDL,
VERILOG for design and MODEL_SIM, SYNPLIFY etc., for simulation and synthesis.
 For the designing of chip, efficient algorithms play vital role for the design confirmation.
 Algorithmic design is pre and post simulation and information from different tools verify
the optimization of design with respect to operating time and area occupied. This means
chip will perform improved operation and proved optimized if some innovative scheme
is introduced in algorithm as compare to prevailing techniques. After realizing the importance
of algorithm, behavioral or structural model of chip is developed. Professional engineers
use the structural modeling as this is easy to simulate and synthesize. But many engineers
and scientists use behavioral model because source code used may be half in length as
compare to structural model code. For our research work of ASIC design methodologies,
we are using Scalable Image Compression Algorithm proposed by Wang and Shi Wang
Yi-zhuo and Shi Feng (2003). This algorithm has few limitations which will be rectified
while completing the design of our ASIC. Adaptability and error bearing tolerance for
network bandwidth is effectively controlled using scalable compression algorithm and
multicast transmitting mode Mccanne S (1996) and Li Xue (1998).

Scalable compression divides the original image into multilayer stream blocks belonging
to their respective groups. Receivers are specified with respect to their own level of
subscription by joining a subset of the groups. They obtain video of different quality stream
number. Due to the network characteristics of heterogeneity, encoder parameters are set
up or one can utilize different coders to compress the image. The operating mode is called
simulcast in which each stream is relatively independent to each other, and can decode
independently to get the video signal of different quality, so it doesn’t utilize statistical
relativity among streams, the amount of the redundant information is too large, and the
compression efficiency will be low, causing enormous bandwidth waste in transmitting
terminal Wang Yi-zhuo and Shi Feng (2003). In section 2 of the paper, there is introduction
of DCT and our layered compression algorithm based on DCT is described showing data
flow in different steps of our proposed ASIC. Section 3 depicts the architecture of the chip
with the explanation of how to append our large input data file developed using any high
level language like C++ or Java. Section 4 is comprised of all test results showing
substantiation of our concept to transmit data efficiently for chip simulation in VHDL and
in MODEL SIM.

2) LAYERING PROCEDURE

Prior to make idea of layering procedure, it is important to clarify few aspects regarding
compressing video or still data.

2.1) COMPRESSION OF VIDEO DATA

Compression of image data is the first step in image processing area. There are different
standards of video coding like JPEG, JPEG2000, MPEG series etc. There are two major
categories defined for video and still image compression;

 i) Discrete Cosine Transform
ii) Wavelet Transform

Authors in Siva Somasundaram and K.P. Subba Lakhshmi (2003) gave the picture of
scalable algorithm using wavelet transform. In the area of image compression 2DWT and
3DWT is utilized now for best video performance on the receiver end. Wang and Shi have
proposed an algorithm which divides the video image in multi-layer system by using DCT.
DCT algorithm is very effective due to its symmetry and simplicity. It is good replacement
of FFT due to consideration of real component of the image data. In DCT we

43Vol. 1, No. 1, (Spring 2007)

Large Data handling Technique for Compression Pre-coder using Scalable Algorithm

leave the unwanted frequency components while opting only required frequency components
of the image. Image is divided into blocks and each block is compressed using quantization.
 Moreover, many simulation tools like MATLAB are available to estimate the results prior
to realization of design in real time. Equation (1) and (2) gives the one dimension DCT
standard equations for the data out put and coefficient calculation respectively during
compression, Equation (2) is used for the calculation of DCT coefficients which are fixed
for different block of input image Zheng Baoyu (1992).

2.2) PROPOSED ARCHITECTURE AND PROCEDURAL STEPS

DCT algorithm is utilized for the behavioral architecture design verification. The full image
is divided into blocks or layers carrying pixels. Pixels of different layers travel from input
image source to the output coders through number of processes and steps. The pixels are
always kept in their own block or layer by introducing most important signal like “Current
layer” as in our design. First process is the compression of data using encoding process.
This is achieved using “Down sample” module in our ASIC. Couple of RAM circuits are
appended in the design to calculate data writing address in RAM1 and carry rebuild data
of B1 and B2 in RAM2 as shown in Fig. 5.

The explanation of our Algorithm is as follows;

First step is the division of block of data into 4 layers, Base layer B1 and the extended
layers E1, E2 and E3. From first extended layer E1 or any other extended layer E2 or E3,
another base layer is extracted named as B2. B2 generation causes the number of layers
equal to five. Size of B2 with respect to pixels is ¼ of all other image layers in the system.
 In up sampling model this B2 re-gain its size equals to any other layer in the system.

After rebuilding of pixel data, extended layers E1, E2 and E3 are changed to E1’, E2’ and
E3’ in second last pre coder module and stored in output buffer-1 and B1 and B2 after
rebuild process is stored in buffer-2, from where signals are transferred to coders. B1 after
rebuild will remain same, but 5th layer B2 which is extracted from E1 will be changed in
size. The process of missing pixels is explained in equation (3), while Fig. 1, Fig. 2, Fig.
3 and Fig. 4 are the matrices containing the pixels explain the steps of data from selected
input image block of size 8X8.

Pix(X) = Pixel created by formula and nth pixel is same as that of n-1st pixel on row as
well as on column of our pixel data matrix. For our understanding, we selected an 8X8

pixel Block from input image “PEPPER.PNG”. We use our Scalable Algorithm for the
calculation of pixel layers as shown in Fig-1 with pixel number in their corresponding
block.

44 Journal of Information & Communication Technology

Muhammad Kamran, Shi Feng, Ji Weixing

Pix(X) = (Pix (i) + Pix (j))/2 (3)
Where i and j = 1, 2, 3, 4……n,
Pix (n) = Pix (n-1) for Row and for Column as well.

ky (((k (= ∑
1−

(1cos πx
NN

c kn
+n((

N

2
22

=0n

(

c =
N
2 c(k (cos

N2
(1 πk+n2 (

N N×

 (1)

 (2)

45Vol. 1, No. 1, (Spring 2007)

Pixels belonging to E1 are separated as shown in Fig. 1 and B2 extraction from E1 is
obtained using same idea of leaving alternate row and column.

Lastly, before getting the complete data for the coders connected on the out put of our pre-
coder ASIC, up sampling takes place and 4 pixel B2 will be converted into 16 pixel B2
by using equation (3) to make the size of B2 same as that of any block of pixel in the
design. The up sampled B1 and B2 used to calculate new extended layers E1’, E2’ and
E3’ in pre-coder module (Not in the scope of paper). The calculations for the rebuilding
of pixels process is represented in Fig. 2.

The matrix of Fig. 3 describes X1, X2, X3 & X4 are the generated pixels using average
formula, while last row and the column of the matrix is just the repetition of 2nd last row
and column.

Fig 1
Total Frame of 64 pixels with E1 in Bold Letters

Fig 2
B2 in bold letters-extraction from E1

Fig. 3
Rebuilding of B2

Large Data handling Technique for Compression Pre-coder using Scalable Algorithm

154
E1
192
 E2
254
E1
239
 E2
180
E1
128
 E2
123
E1
110
E2

123
 B1
180
E3
198
B1
136
E3
154
B1
136
E3
105
B1
136
E3

123
 E1
136
E2
154
E1
180
E2
136
E1
123
E2
110
E1
123
E2

123
B1
154
E3
154
B1
180
E3
167
B1
136
E3
149
B1
123
E3

123
E1
154
E2
180
E1
166
E2
166
E1
154
E2
136
 E1
123
E2

123
B1
154
E3
154
B1
29
E3
149
B1
180
E3
136
B1
136
E3

123
E1
136
E2
123
E1
123
E2
136
E1
198
E2
180
E1
154
E2

136
B1
110
E3
123
B1
123
E3
136
B1
154
E3
166
B1
136
E3

154
254
180
123

123
154
136
110

123
180
166
136

123
123
136
180

154
180

123
166

154
X2=167
180
180

X1=138
X3=155
X3=173
 173

123
X4=144
166
166

123
144
166
166

Fig. 4 provides final B2 layer with 16 pixels after rebuilding process used to calculate new
enhanced layers in pre coder module of our ASIC.

Fig 4
Complete 16 pixels B2 layer after rebuild

This averaging formula is not only applied to get the pixels in the rows, but also for the
columns. Moreover, last row and last column is same as that of second last row and
column. For the design of pre-coder ASIC for our research, each layer is comprised of
64 X 128 pixels of 16 bits each. This means there are 64 rows and 128 columns of the
pixels for five layers in which image data is to be divided. The scope of our research is
to prove the proposed algorithm by selecting the best architecture for the chip operation.

Input data is large enough not to be simulated by manual selection of data pixels. To
overcome the problem of data generation, we developed a ROM which keeps data into
itself at different addresses. ROM program can be developed in any high level language
like C++, JAVA etc. This data from ROM is linked with VHDL source code by taking
privilege of IEEE_1164 standard library.

Fig 5
Image Compression Pre-Coder, Behavioral Architecture

2.3) DATA GENERATION AND TRANSFER TECHNIQUE

The proposed architecture for pre coder chip of the research work is shown in Fig.5. As
described earlier, RAM1 arranges the pixel layers and places the data into their corresponding
blocks while second RAM reads the rebuild data of B1 and B2 from the last module coder
control and transmits it to pre coder module for calculating new enhanced layers E1’,E2’,E3’.
Block diagram for behavioral design is developed followed by VHDL code for initializing
the data to verify the operation of each module. The chip will be ready for real time
operation after interconnection of all modules, simulation, synthesis and post simulation
process. Successful post simulation ensures the ASIC download on FPGA (Field
Programmable Gate Array).

Journal of Information & Communication Technology46

Muhammad Kamran, Shi Feng, Ji Weixing

154
167
180
180

138
155
173
173

123
144
166
166

123
144
166
166

CLK

START pic_data

curr layer

frane_ start

Down

Sample
Input

Data

Buffer

16

3

R
A
M

Coding_Start

Coding_Finish

pix_data pix_data

pix_data4

Pre_ Coder

rebuild_data rebuild_data

Coder

Control

buff_b

buff_e

ram_ address ram_ address

wr_en rd_en
RAM1 RAM2

address_read address_write

2.3.1) SOURCE CODE INCLUSION IN VHDL

Block diagram of Fig. 6 is extracted from our main pre coder ASIC in Fig-5, showing flow
of data generated by ROM automatically in a random way, which is further added in VHDL
code to call for random pixel data for the simulation of ASIC input data coming from video
device. Data is read from ROM using “READ” command executed i n a loop. Most
important signals current layer, start and frame_start are also prominent in Fig. 6, which
divides data stream into their corresponding blocks. As discussed earlier, for the verification
and realization of ASIC, first step is the simulation of chip Fig. 5 shows the behavioral
model of our complete pre coder ASIC.

The RAM used in the design is of quite large size to store pixel data and is not able to be
synthesized by XILINX ISE easily Siva Somasundaram et al. (2003). For the sake testing
and verification of architecture we will utilize comparatively small pixel data or XILINX
IP core will be used for handling such a big RAM.

The process of simulation using ROM of large data is successfully and efficiently carried
out by using VHDL code and IEEE_1164 standard library, but synthesis of such designs
can not be done using XILINX ISE, Mentor Graphics or SYNPLIFY synthesis tools.

Fig 6
Input vector generation ROM and Down sample module process

The computer program in C++ is developed to generate ROM carrying data input vectors
representing the pixel data of real time video. This program file is stored as *.dat file and
this data is later on fetched by VHDL program for the down sampling. VHDL code will
be described for the problem as given below;

47Vol. 1, No. 1, (Spring 2007)

Large Data handling Technique for Compression Pre-coder using Scalable Algorithm

ROM

Pix_data

Current Layer

Start

Doen
Sample

Module#1

Frame_Start

Buffer Control
Module#2

B1, E2 E3 E1

B1, E2 E3 E1 B2

Library IEEE;
Use IEEE.std_logic_1164.all;
Use STD.TEXTIO.all;
Entity ROM is
Port(start,clk:in std_logic;
Rom_adr_i:in std_logic_vector(6 downto 0);
Pix_data:out std_logic_vector(15 downto 0); Current_layer:in std_logic_vector(2 downto 0));
End ROM;
--Architecture will contain
Image_loop:=0;
while ((not endfile(External file)) and (Image_loop<127)) loop
readline (External file, v_line);
read(v_line,v_rom_data(v_loop));
inc image_loop
end loop;

2.3.2) SOURCE CODE EXPLANATION

Clock is defined with time period of 20 ns. Program will keep on fetching the data till
while loop is terminated. We used 128 pixel data for testing and even low for the
representation of simulation results. But it may have any value depending upon the system
or image loop defined in program. C++ code has to carry a pointer for pointing out the
data defined in a function; two “FOR” loops are utilized. First works for given number
of pixels defined, (128 in our case) and second “FOR” loop works for the 16 bits for each
pixel with the condition of random data pick up represented in binary form. For our ASIC
simulation, 128 pixels video data of 16 bits each is generated from the source. By appending
library function USE TEXTIO.ALL in our VHDL code, we can read data from some
externally generated file developed in any higher level language. From our code, input
vector file “ROM.dat” is added into the project or SRC directory (Holding VHDL Source
Code and Test Bench) and acts as a ROM storing data with maximum 128 pixels. This
technique is very helpful in generating the data input vectors for testing of any other type
of ASIC for simulation. Data from Read Only Memory is read from specified addresses
automatically generated and acquired by VHDL source code with out manual insertion in
test bench. It is for sure, this data is used for testing and simulation of the chip only and
not for synthesis.

This problem will be encountered with such file during realization of ASIC on experimental
FPGA board of ALTERA or XILINX. For the implementation of design, these FPGA
boards are used to extract data from VHDL or VERILOG code after successful synthesis.

1) SIMULATION RESULTS

Our VHDL code reads the data stored in the file in random order according to the
automatically generated address. The test results of our work corresponds to the verification
of the idea innovated for the testing of ASIC. Fig-7 gives the successful simulation wave
results using MODEL_SIM simulator. Signals apparent from Fig. 7 are Rom_adr_i, Start,
Clock, frame _start, Pixel data, and Current layer. Number of pixels generated depends
on number of rom_adr-I signal. Frame_start and start should be equal to ‘1’ prior to data
transfer process.

Journal of Information & Communication Technology48

Muhammad Kamran, Shi Feng, Ji Weixing

Fig 7
Result of Data Transmission in MODEL_SIM

Fig. 8 gives the simulation result of the code developed in VHDL to prove our work. We
have to apply rom_adr_i (Input address) in test bench causing its corresponding data to
be available at the input of first module “Down Sample” of chip. This input data matrix
will be further divided into 5 layers. Fig-7 and 8 verifies the results of operations on pixel
data layer division as indicated in Fig-6. Table-1 is displaying the experimental results in
list form till 210 ns time with current layer representation in Hexadecimal representation.
 Current layer is assigned decimal “0” for B1,”1” for E2, “2” for E3,”3” for E1 and “4”
for B2 pixel data for distinction between different layers. If the time is increased for
simulation beyond 210 ns, we can be able to see more information in timing wave form
as well as in VHDL listing table. ROM_Address is the input address of ROM containing
input data simulating the actual input video data of image pixels. The bold arrows in table-
1 on 30-40 ns time and 50-60 ns gives clear picture that address of ROM does not change
as well as input pixel data remains same. The input pixel value change takes place when
we get positive edge of clock i.e., 0 to 1 after every 20 ns time.(Fixed Frequency in test
Bench) For every odd value time in “ns” we get positive edge of clock and hence the data.

Fig 8
VHDL Response with ROM Address and Corresponding signal

49Vol. 1, No. 1, (Spring 2007)

Large Data handling Technique for Compression Pre-coder using Scalable Algorithm

0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 000A

20 40 60 80 100 120 140 160 180 200 220 240 260 280

UUUU C83F A926 AEDB A7E4 0146 O096 3F2B 1E2E 88FF E825 5721

U 0 1 0 1 0 1 0 1 2 23 3 32 2

rom_adr_ I

s tar t

c lk

f rame_star t

p ix_data

current_ layer

ns

Table 1
Listing of Module1 with Automatic generated data

4) CONCLUSION AND FUTURE WORK

This paper presents the starting portion of our research project indicating the problems of
ASIC design verification facing the problem of large data transformation. In future complete
pre coder design will be appended to the coders and a complete image compression system
or scheme will be realized after mathematical verification of algorithm. The intention is
to use XILINX Spartan 2E FPGA with 30000 gates for implementation of ASIC Design.
 Moreover, this design will be tested in real time using TEKTRONIX Logic analyzer and
digital scope.

5) ACKNOWLEDGEMENT

This work is the part of the project assigned during PhD work in Embedded System
Laboratory, Department of Computer Science and Engineering, Beijing Institute of
Technology, Beijing, China. This design is planned to be commercialized afterwards, which
will provide good contribution in the area of image compression with respect to stability
and band width variations. The PhD program is totally funded by Higher Education
Commission, Government of Pakistan.

REFERENCES

WANG YI-ZHUO AND SHI FENG, “Scalable Compression Algorithm for Video Monitoring
System” Journal of Beijing Institute of Technology, 2003, Vol. 12 suppl.

MCCANNE S, “Scalable compression and transmission of internet multicast video” PhD
dissertation, Berkeley: Computer Science Division (EECS), University of California
Berkeley, 1996.

LI XUE,“ Scalable and adaptive video multicast over the internet” Atlanta: PhD Thesis,
Georgia Institute of Technology, 1998.

Mysupport.XILINX.com
SIVA SOMASUNDARAM AND K.P. SUBBA LAKHSHMI, “A Novel 3D scalable

algorithm” Proceedings of SPIE, Volume 5022, May 2003, pp 966-972
ZHENG BAOYU,”A New Algorithm for the 2-D Discrete Cosine Transform IEEE

Transactions on Image processing, Vol. 40, pp 2166-2173, September 1992

Journal of Information & Communication Technology50

Muhammad Kamran, Shi Feng, Ji Weixing

0.0
010
020
030
040
050
060
070
090
110
130
150
170
190
210

Time(ns)

1
0
1
2
1
1
0
2
2
2
2
2
2
2
2

Del ta

uuuu
0000
0001
0001
0001
0002
0002
0003
0004
0005
0006
0007
0008
0009
000A

ROM_Addres s

uu
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Star t

uuuu
uuuu
uuuu
c83f
c83f
aefd
aefd
12cb
7dfa
3344
ccds
54bc
112f
23df
9a6b

Input Data

UUU
UUU

000
000
001
000
001
000
001
010
011
010
011
100
100

Current_Layer

